Generalized Preference Learning for Trust Network Inference
نویسندگان
چکیده
منابع مشابه
Preference Inference through Rescaling Preference Learning
One approach to preference learning, based on linear support vector machines, involves choosing a weight vector whose associated hyperplane has maximum margin with respect to an input set of preference vectors, and using this to compare feature vectors. However, as is well known, the result can be sensitive to how each feature is scaled, so that rescaling can lead to an essentially different ve...
متن کاملModeling and Evaluating Trust Network Inference
The growth in knowledge sharing enabled by the (Semantic) Web has made trust an increasingly critical issue. Based on explicit inter-agent trust relations, a trust network emerges on the (Semantic) Web in the knowledge sharing context. The concept of a trust network and its application to knowledge sharing have received recent attention but neither their structural properties (e.g. dynamics, co...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملP2P Network Trust Management Survey
Peer-to-peer applications (P2P) are no longer limited to home users, and start being accepted in academic and corporate environments. While file sharing and instant messaging applications are the most traditional examples, they are no longer the only ones benefiting from the potential advantages of P2P networks. For example, network file storage, data transmission, distributed computing, and co...
متن کاملA priori trust inference with context-aware stereotypical deep learning
In multi-agent systems, stereotypical trust models are widely used to bootstrap a priori trust in case historical trust evidences are unavailable. These models can work well if and only if malicious agents share some common features (i.e., stereotypes) in their profiles and these features can be detected. However, this condition may not hold for all the adversarial scenarios. Smart attackers ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2957191